Customization: | Available |
---|---|
After-sales Service: | Yes |
Warranty: | 12-18 Months |
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
Many different configurations of shell-and-tube heat exchangers are available. There are advantages and disadvantages to each design, depending on factors such as process and thermal requirements, available space, financial budget and cleaning requirements.
The Tubular Exchanger Manufacturers Association, or TEMA, publishes a standard that establishes design, fabrication, tolerances, installation and maintenance of shell-and-tube type exchangers. This standard and the ASME code are the main standards used to design and fabricate exchangers along with any applicable customer specifications. The TEMA standard also defines the classes and main configuration styles of exchangers.
Figure shows the available combinations of exchanger components from the TEMA standard. The designation types use a letter code for each of the front-end, shell and rear-end types. For example, one common type is BEM. It has a bolted bonnet on each end, fixed tubesheets and a single-pass shell section. Another example is an AES type, which has a bolted front channel with removable cover, a single-pass shell and a floating rear tubesheet.
Shell constructions:
The most common TEMA shell type is the "E" shell as it is most suitable for most industrial process cooling applications. However, for certain applications, other shells offer distinct advantages.
For example, the TEMA-F shell design provides for a longitudinal flow plate to be installed inside the tube bundle assembly. This plate causes the shell fluid to travel down one half of the tube bundle, then down the other half, in effect producing a counter-current flow pattern which is best for Heat Transfer.
This type of construction can be specified where a close approach temperature is required and when the flow rate permits the use of one half of the shell at a time. In heat recovery applications, or where the application calls for increased thermal length to acheive effective overall Heat Transfer, shells can be installed with the flows in series.